close

漫畫微積分入門:輕鬆學習、快樂理解微積分的第一本書

漫畫微積分入門:輕鬆學習、快樂理解微積分的第一本書秒殺搶購

漫畫微積分入門:輕鬆學習、快樂理解微積分的第一本書網友評鑑5顆星

最近好多網友都在問哪裡買

中文書-自然科普-數學分類優質推薦

  • 定價:280
  • 優惠價:9252
  • 本商品單次購買10本8折224

  • 漫畫微積分入門:輕鬆學習、快樂理解微積分的第一本書

    想了解更多漫畫微積分入門:輕鬆學習、快樂理解微積分的第一本書的內容嗎
    點圖即可看詳細介紹

    內容簡介

      ★看漫畫學微積分,日本暢銷數學作家親授征服「危機分」之道
      高中生也能輕鬆學習的漫畫數學聖經

      ◎首創以漫畫型式解說微積分,談笑之間輕鬆理解
      ◎日本暢銷二十多萬冊,破解微積分學習迷思
      ◎以日常生活實例說明微積分的概念,從基本觀念循序漸進
      ◎每章附有「解說」單元詳盡導讀,簡單易懂的數學故事書

      微積分≠危機分!
      微積分≠只是算數學!
      微積分≠老師用來當人、學生嚇得皮皮挫!
      微積分≠艱澀難懂、索然無趣、完全派不上用場!
      微積分不是課堂上的高深學問,自然現象、社會現象、日常生活中,處處是微積分的應用與趣味!

      對許多人來說,微積分是一個痛苦的學習回憶,但其實日常生活中隨處可見微積分的概念。
      捲筒衛生紙的長度和微分、積分有關,白蘿蔔切片可以用來思考體積的計算,而裙子的長度及開高叉的設計竟也運用了微分的概念!
      本書首創以漫畫型式解說微積分,從基本概念循序漸進,讓你在不知不覺間理解微積分。書中列舉日常實例來說明微積分的概念,例如新幹線的速度、開車、人造衛星軌道等,簡單易懂。
      這是一本高中生也能懂的漫畫數學聖經。
      讀完本書,你會發現微分、積分原來這麼有趣,一點也不難!

    作者簡介

    岡部?治

      北海道札幌市人。東京大學理學部數學科畢業。現任埼玉大學經濟學部教授,專攻拓樸學。他是一位數學家,卻擅長以平易近人、生動幽默的方式,解釋眾多學生畏懼的數學。他的想法豐富多變,不受拘束,廣獲好評。著作有《漫畫數學入門》(□□□□□入門)、《專為數學白痴設計的數學入門》(□□□□□□□□□□□入門)、《微分和積分原來如此私塾》(微分□積分□□□□□□□□□)、《解放你的數學感覺》(□□感□□□□□)、《阿基米德的構思術》(□□□□□□□□想術)、《漫畫數學感覺》(□□□□□感□);BLUE BACKS系列則有《用漫畫來學數學》(□□□□.?□小事典)、《用漫畫來學幾何》(□□□幾何入門)等。

     

    目錄

    目次

    前言

    第一章 如何計算捲筒衛生紙的長度?
    ──微分和積分的概念──
    從實際測量到紙和筆……如何輕鬆計算……數學是相互關聯的……一目了然的圖表……圖表的斜率問題……80km/h表示什麼?……微分和積分的關係……長條圖和積分的關係

    第二章 白蘿蔔切薄片,思考體積
    ──微分和積分的定義──
    微分的定義……積分的定義……圓周率……體積也是積分……旋轉體的體積……基本定律

    第三章 為什麼微分比較晚出現?
    ──微分的前史──
    為了微分……培育數學之父是必要的……幾何學和代數學的統合……費馬的成就……微分是抽象的

    第四章 細分計算面積
    ──積分概念的發展──
    卡瓦列里的原理……沃利斯的醫學方法……巴洛的波折人生

    第五章 牛頓和萊布尼茲之爭
    ──微分積分的完成──
    敬陪末座的牛頓……價值非凡的一拳……天才都心不在焉……奇蹟的
    兩年……微積並非數學……牛頓和萊布尼茲的不同……為什麼是同時
    發現呢?……物價上漲率的漲幅表示什麼?……基本定律的意義……
    柯西的極限……微分積分的完成

    第六章 如何才能事半功倍?
    ──試試微分積分的計算吧──
    尋找經濟有效的方法……微分的計算法……佐證積分公式……實際計
    算體積

    第七章 柔軟的洋蔥該怎麼計算體積呢?
    ──以微分積分來重新認識國中的面積和體積公式──
    錐體和三角形是親戚……以卡瓦列里原理計算錐體體積……計算洋蔥
    體積不需要用繩子

    第八章 從開高叉到化石的年代測定
    ──微分積分的概念竟然可以這樣用──
    駕駛汽車和微分……導航是積分……設計方面的應用……無法微分的
    點……不連續性的意義……不連續性的利用……化石年代測定的運
    用……人造衛星的速度計算

    第九章 廁所是思考和空想的場所
    ──重新檢視高中數學──
    以捲筒衛生紙概念檢視高中數學……探討曲線凹凸……二次函數的
    分析……三次曲線的形狀……牛頓近似

    第十章 設法近似□
    ──來試試比較複雜的函數──
    週期函數的重要性……合成函數的微分是什麼?……部分積分……換
    元積分……以辛普森公式計算□

    arrow
    arrow
      全站熱搜
      創作者介紹
      創作者 nwzhz32519 的頭像
      nwzhz32519

      nwzhz32519的部落格

      nwzhz32519 發表在 痞客邦 留言(0) 人氣()